Derivation of the quadratic equation
The simplest quadratic equation is: x2
Translation in the y-direction gives: x2+C
Translation in the x-direction gives: (x−B)2+C
Finally, scaling gives: A(x−B)2+C
Solving this equation for 0 gives:
A(x−B)2+C(x−B)2x=0=A−C=B±A−C
The “default” form of the quadratic equation is
ax2+bx+c, so let’s rewrite to this form:
A(x−B)2+C=Ax2−2ABx+AB2+C
From this, we can deduce:
abc=A=−2AB=AB2+C⟹A⟹B⟹C=a=2a−b=−4ab2+c
Combine these equations to get:
x=B±A−C=2a−b±4a2b2−ac=2a−b±4a2b2−4a24ac=2a−b±b2−4ac